
   
 

   
 

 NiW: Converting Notebooks into Workflows  
to Capture Dataflow and Provenance 

Lucas A. M. C. Carvalho1, Regina Wang2, Yolanda Gil2, Daniel Garijo2 
1University of Campinas, Institute of Computing, Campinas, SP, Brazil 

2University of Southern California, Information Sciences Institute, Marina del Rey, CA, U.S.A 

lucas.carvalho@ic.unicamp.br, gil@isi.edu, dgarijo@isi.edu 

 

ABSTRACT 
Interactive notebooks are increasingly popular among scientists to 
expose computational methods and share their results.  However, 
it is often challenging to track their dataflow, and therefore the 
provenance of their results. This paper presents an approach to 
convert notebooks into scientific workflows that capture explicitly 
the dataflow across software components and facilitate tracking 
provenance of new results. In our approach, users should first 
write notebooks according to a set of  guidelines that we have 
designed, and then use an automated tool to generate workflow 
descriptions from the modified notebooks. Our approach is 
implemented in NiW (Notebooks into Workflows), and we 
demonstrate its use by generating workflows with third-party 
notebooks.  The resulting workflow descriptions have explicit 
dataflow, which facilitates tracking provenance of new results, 
comparison of workflows, and sub-workflow mining.  Our 
guidelines can also be used to improve understandability of 
notebooks by making the dataflow more explicit. 

CCS CONCEPTS 

• Information systems → Artificial intelligence; Knowledge 
representation and reasoning 

KEYWORDS 
Scientific Workflows; Workflow Design; Electronic Notebooks. 

1 INTRODUCTION 
Interactive notebooks have become very popular in science to 
capture computational experiments [14]. These notebooks include 
code, visualizations, and explanations, and can be easily shared 
and re-run. 

As scientists carry out their research, they may need to 
compare the results and methods of different experiments.  This 
involves comparing final results, comparing intermediate results, 
comparing steps of the method, and comparing parameter values.  
Since notebooks contain raw code, it can be hard to understand 
how new results are generated, as well as to compare notebooks.  
In contrast, workflows offer modular components to run code, and 
have an explicit dataflow. This can facilitate provenance capture, 
as well as automated mining of reusable workflow fragments [4].  

Workflows also facilitates understanding and performing 
comparisons, particularly for non-programmers [6]. 

This paper presents an approach for converting notebooks into 
workflow descriptions by mapping various aspects of notebook 
cells into workflow components and dataflow. Our approach is 
implemented in NiW, a prototype tool to convert Jupyter 
Notebooks 1  into WINGS workflows [7]. Based on the 
assumptions of our approach, we propose a set of guidelines for 
designing notebooks that facilitate the conversion and can be used 
by notebook developers to improve the understandability of their 
notebooks.  

2 DATAFLOW AND PROVENANCE IN 
WORKFLOWS AND NOTEBOOKS 

This section discusses general issues for identifying dataflow and 
tracking provenance in notebooks, compared with simple dataflow 
in workflows.  Our work to date has focused on mapping Jupyter 
Notebooks to workflow descriptions that can be used in the 
WINGS workflow system [6], but many of the issues will be 
common for other notebook and workflow systems.   

2.1 Dataflow in Workflows 
Workflows capture explicitly the dataflow across software 
components. We describe here a very simple dataflow 
representation and workflow structure that we assume in the rest 
of the paper.  This approach is used in several workflow systems, 
including WINGS [6], Pegasus/Condor [4], and Apache Taverna 
[12]. 

Each software component (or step) of a workflow may have 
multiple datasets as inputs, multiple datasets as outputs, and 
multiple parameters, which are provided as simple numeric or 
Boolean values. A dataset generated by a component can be input 
to another component, thereby indicating the flow of data (i.e., the 
dataflow) from a component to another.   

A workflow management system can run a workflow if the 
software components can be executed and the respective input 
datasets and parameter values are provided.  Because the dataflow 
is explicitly captured in the workflow, the system can record the 
provenance of each new dataset generated by the workflow.  

                                                                    
1 http://jupyter.org  

2017 Workshop on Capturing Scientific Knowledge (SciKnow), 
held in conjunction with the ACM International Conference on 
Knowledge Capture (K-CAP), December 4, 2017, Austin, TX. 



SciKnow’2017, December 2017, Austin, Texas USA Carvalho et al. 
 

2 
 

The dataflow of a workflow is often shown as a graph.  
Workflows can be compared as graphs.  Indeed, graph algorithms 
have been used to query workflow repositories [1], and to mine 
workflow repositories to find commonly occurring sub-workflows 
[5]. Visual user interfaces that show the dataflow graph in a 
workflow are easy to use for non-programmers [8].   

2.2 Overview of Computational Notebooks 
Notebooks aggregate text and code, grouped into a sequence of 
containers or cells. Cells can be code cells, markdown cells, and 
raw cells. Code cells have running code usually with one 
programming language such as Python, R, Java, etc. Code cells 
are the heart of notebooks. Markdown cells are comments and 
documentation, so users can add graphics, formatting, etc. These 
cells are not linked with any other cells and run without 
interfering other cells. Raw cells display raw text without any 
conversions, and are much less used. Unlike raw and markdown 
cells, code cells are linked with each other when the notebook 
runs, though code cells run like a single unit of code. Thus, when 
a code cell performs any activity (e.g. initialize a variable), the 
next code cell to be run carries it on as though there were no other 
cells in between. Outputs are shown in the notebook when a cell 
code includes a plot or print statement. 
     Jupyter Notebook 2  is one of the most popular notebook 
platforms. They were originally named IPython Notebooks since 
they are primarily used with Python, but expanded with kernels 
for several other programming languages other than Python. A 
kernel is a program that runs the notebook’s code.  

2.3 Understanding Dataflow of Notebooks 
We analyzed a diversity of Jupyter Notebooks to understand their 
dataflow and the provenance of their results. Common problems 
that we found include:  
 

1. Processing: A user may not have a clear understanding of 
what are the main processing cells of a notebook. For 
example, cells for assigning values to variables or 
importing libraries are not processing units and should be 
placed in the same cell that uses those variables.  

2. Dataflow: Input file names are either implicit in the code 
or defined as parameters through method calls in previous 
cells. This represents implicit dependencies between cells, 
and therefore make it difficult to understand the dataflow 
among them. In addition, users may also have difficulty 
figuring out what files were generated by a given cell.  

3. Inputs: Input files may contain pointers to other files that 
are opened and used as inputs inside of a cell.  This 
creates an implicit dependency that is difficult to detect.  

4. Outputs: When a cell does not have an explicit output it 
is very difficult to understand what kind of process that 
cell performed. A cell may overwrite a file with the same 
name generated by other cells, so it can be hard to track 
the provenance of newly generated files. Notebooks can 

                                                                    
2 http://jupyter.org/ 

generate visualizations, but those do not necessarily 
generate output files.  

5. Files: It is very difficult to understand how the files in 
notebook folders correspond to the cells that used or 
generated the files.  

6. Data: Some notebooks are available in repositories 
without any test data. Therefore, this makes it hard to 
understand the expected data format of the input files and 
the outputs generated by the notebook.  It also makes it 
hard to rerun the notebooks. 

      In summary, many problems arise in trying to understand what 
is the dataflow across the cells of a notebook and how they use or 
generate notebook files. This makes it very hard to figure out the 
provenance of any results.  This also makes it hard to understand a 
notebook, as well as comparing different notebooks.   

3 MAPPING NOTEBOOKS TO WORKFLOWS 
When mapping notebooks into workflows, many issues must be 
addressed. We discuss here those issues, and our approach to 
tackle them.  We start with general issues.  After that, we focus on 
issues specific to Jupyter Notebooks and Python, since that has 
been the focus of our work so far.  Then we discuss issues specific 
to the WINGS workflow system, which is the target of our 
mappings.   

3. 1 Components 
3.1.1 Executable Code  

     Differences: Each component in a workflow must have some 
running code within it. In notebooks, cells may contain solely 
value assignment to variables, function declarations or library 
imports, or documentation, which are not executable code by 
themselves and cannot be easily mapped into a workflow 
component.  Another difference is that in notebooks even though 
code is split cell by cell, most of the splits only exist to benefit 
human readability and do not actually affect the code itself. Cells 
are used just to modularize the code.  As a result, different users 
may break up the code at different places and it will not matter 
much if the sequential order to run these cells is preserved when 
there are any data dependencies between them. In contrast, in 
workflows the code is split into components which are isolated 
from one another and that individually carry out a meaningful 
function. An example of this is that if a variable is created in a 
component and used in a second component, the latter will not 
have access to this variable unless it is generated by the former as 
an output and explicitly consumed as an input by the second 
component.   
     Approach: Each notebook cell with running code will be 
mapped to a workflow component. If a notebook cell does not 
have running code and only has library imports or method 
declarations, it will become part of a cell that requires that 
information. 
  



Converting Notebooks into Workflows           SciKnow’2017, December 2017, Austin, Texas USA 
 

 3 

3.1.2 Libraries and Methods 

Differences: A notebook only needs to import a library or 
state a method once. Since workflows are componentized, the 
imports and method declarations need to be done in each 
workflow component that uses them. 

Approach: Every library used in the notebook will be 
imported into all workflow components created. A method will be 
included in a component only if the method is used in it. 
3.1.3 Open Files 

Differences: A notebook can open a file and use it in any 
subsequent cell. In a workflow, a file can be used only inside the 
component that has that file as input. 

Approach: If a file is opened and used across many cells, 
those cells will be merged into a single component. Note that an 
alternative approach might be to create separate components for 
each of the cells and open and close the file in each of those 
components, but this would result in inefficiencies if the data is 
written to files and read from files too many times.  
3.1.4 Markdown Cells 

Differences: Markdown cells in notebooks do not contain 
running code, but need to be included in the workflow as 
documentation so that the information that they contain is not lost. 
Workflow components can have documentation. There can be 
more markdown cells than code cells. In addition, the relationship 
between markdown cells and code cell is not explicit. A 
markdown cell may be related to either its previous or its 
subsequent cell. 

Approach: Since the relationship between markdown cells 
and code cells is unknown, the assignment is made in the 
following way: a markdown cells’ information will be attached to 
the documentation of the component created for its subsequent 
code cell. 
3.1.4 Component Naming 

Differences: In a notebook, a cell does not have a name.  In a 
workflow, a component has a name that generally describes the 
function of the component is in the workflow.  

Approach: A name will be generated for each component of 
the workflow, starting with “Component” followed by the 
ordering number from the cell (e.g., Component1, Component2 
and Component3). 

3.2 Data and Parameters 
3.2.1 Parameters  

Differences: In notebooks, method parameters are set through 
program variables. In workflows, parameters are inputs to 
components and provided by users. In workflows, if parameters 
are coming from other components, these parameters must be 
passed explicitly through a file.  

Approach: Variables of primitive types (i.e., Boolean, string, 
integer, float, date, etc.) that are given constant values in 
notebooks will be mapped to parameters in workflows, and they 
will be given the name that was used in the notebook. 

3.2.2 Input Files  

Differences: A notebook may be given input data once at the 
beginning, and there is no need to pass data through files from cell 
to cell. In a workflow, a component must output a data file that is 
then an input to another component. 

Approach: A data file will be explicitly generated from the 
notebook code in order to be passed to another component in the 
workflow. Code will be added to the component that generates the 
data so that the resulting data is written into a file that can be 
passed to the next component. Although this may not be an 
efficient approach, it facilitates provenance tracking which is very 
important in scientific analysis. 
3.2.3 Output Files 

Differences: In a notebook, cells can write results directly into 
files in the local file system. Other cells show results in 
visualizations.  In contrast, workflows generate results in output 
files. 

Approach: When a notebook cell writes into files in the local 
file system, the corresponding workflow component will have an 
output corresponding to that file.  When a notebook cell shows a 
visualization, a workflow component will be created to generate 
that visualization as an output file. 

3.3 Workflow Structure 
3.3.1 Dataflow 

Differences: In a notebook, although cells are specified 
sequentially they might be executed in any order or a cell may not 
be executed at all. In a workflow, the flow of data among 
components must be specified, and all components are executed.  

Approach: The identifiers of the files generated and 
consumed by components generated for a given notebook will be 
used to obtain the dataflow between the components, and the 
dataflow will be explicitly stated in the workflow structure. We 
assume that notebooks run the cells sequentially, so we do not 
consider any parallelism in the execution. 

3.4 Python-Specific Differences 
A few mappings are challenging because of the specific way that 
Python is used in Jupyter Notebooks.  The IPython kernel allows 
notebooks to use special functions that the standard Python 
interpreter does not support. Since a workflow component would 
be executed using standard Python, these functions cannot be 
directly mapped. Notebooks are also designed for human 
readability and are, as a result, much more documented and 
aggregate more resources than plain Python code. In addition, 
notebooks include Python commands to generate visualizations 
(e.g., graphs), which are executed and the results shown in the 
notebook but not necessarily saved.   
3.4.1 Visualizations 

Differences: Notebooks show visualizations which may not be 
saved into a file. Workflow components would generate 
visualizations and save them in an output file. 



SciKnow’2017, December 2017, Austin, Texas USA Carvalho et al. 
 

4 
 

Approach: If the notebook does not save a visualization, the 
workflow will automatically save the visualization in a file. 
3.4.2 Magic Commands 

Differences: Notebooks have IPython kernel commands know 
as magic commands. They start with “%” and can list all 
variables, return the directory being used, etc. Magic commands 
only work on IPython kernels. The Python standard interpreter 
does not recognize these commands since it is not Python code. 

Approach: Magic commands will be replaced with pre-
defined Python code that implements them. For magic commands 
where no code is available, they will be ignored and not mapped. 
3.4.3 Automatic Output  

Differences: In a notebook, if a variable is printed (using the 
print statement), it will appear as an output. In a software 
component, that code would not generate an output. 

Approach: A workflow component that includes print 
commands will have an extra output with all the results from the 
print statements. 
3.5 WINGS-Specific Differences 

A few mappings are specific to requirements in the WINGS 
workflow system. In WINGS, the code for each software 
component has an associated script that indicates the command 
line invocation for the software, but notebooks do not have this. 
Input files are also treated differently from notebooks.  In 
WINGS, input files are classified into a hierarchy of data types. 
Semantic metadata properties can be specified as well for all input 
files.  Notebooks do not have either. 
3.5.1 Software Components   

Differences: Each workflow component has an associated 
script that invokes the code to be executed in that component. The 
script for a workflow component in WINGS must specify the 
invocation command, number of inputs, parameters and outputs 
that the code for the component expects. Notebooks do not have 
this information. 

Approach: After mapping the code from the cells of the 
notebook into components, a script will be generated for each 
component indicating the invocation command together with the 
total number of inputs, outputs and parameters. 
3.5.2 Input Data Files  

Differences: In WINGS, each input file is assigned a data 
type. In notebooks, there are no data types or metadata for the 
files. 

Approach: All input files will be considered to be of the same 
general data type.   
3.5.3 Workflow Components 

Differences: In WINGS, each workflow component is 
assigned to a type in a component type hierarchy based on its 
function. 

Approach: All workflow components will be given a general 
component type.  

3.6 Usability Requirements 
Our approach requires that users make changes to their notebooks 
in order to facilitate the conversion of notebooks into workflows. 
We took into account additional requirements to reduce the 
burden to users and maximize the utility of the changes required: 

• The user should have to make minimal changes to a 
notebook to allow the conversion tool to generate a 
workflow.  

• Any changes made to a notebook should improve its 
readability and documentation as well as facilitate its 
conversion into a workflow. 

• Any changes made to a notebook should be independent 
of the target workflow system. 

• Any changes made to a notebook should improve the 
understanding of the dataflow. 

• The workflows should include all the documentation of 
the original notebooks. 

• All the results generated by a notebook should be 
generated by the workflow as well, even if they are not 
explicit in the notebook. 

• A conversion tool should automate the process as much as 
possible, and some manual intervention may be needed 
after running it. 

4   GUIDELINES TO DEVELOP NOTEBOOKS  
Based on our approach to map notebooks into workflows, we 
designed a set of guidelines that users can follow to facilitate the 
conversion of notebooks into workflows. Users who are not 
creating workflows will be able to use these guidelines to create 
notebooks that have more explicit dataflow, which will facilitate 
understanding, comparisons, and reuse by others.   

We list here the set of guidelines, each with a justification. 
1. Provide at least one cell with running code: a 

workflow component must have running code within it 
to be created and a workflow must be composed of at 
least one component. 

2. Write into files any newly generated data: the code in 
a cell should write to files with the intermediate and 
final data generated, so that other cells can use those 
files. This will make the dataflow across cells more 
clear. Here we have a trade-off between input/output 
(I/O) performance in disk and provenance capture. 

3. Keep code that uses the same file in the same cell: if 
files are opened and used across many cells, all those 
cells should be merged into a single cell, making the 
notebook cells and workflow components more 
modular.  

4. Keep the notebook clean and working: the cells that 
are not needed to run the notebook should be removed 
and the code in cells must be running correctly to create 
the workflow components. 



Converting Notebooks into Workflows           SciKnow’2017, December 2017, Austin, Texas USA 
 

 5 

5. Ensure that the notebook produces correct results 
when running its cells from top to bottom: the 
notebook cells are considered sequentially (i.e., from 
top to bottom) to create the workflow structure. This 
makes it easier to capture the dataflow between cells 
and understand the notebook. 

6. Provide meaningful names for variables and files: 
these names should make clear what kind of data the 
files contain. Avoid names such as “load” or “data05”. 
Instead, use names like “PluviometricCalculation” or 
“SensorReadings”. This makes the visual presentation 
of notebooks and workflows more readable. 

These guidelines aim to facilitate the automated conversion of 
notebooks into workflows. They also improve the 
understandability of notebooks by making the dataflow more 
clear. 

5   NiW: A Tool for Converting Notebooks into 
Workflows  

NiW (Notebooks into Workflows) is a prototype system that 
implements our approach to convert notebooks into workflows. 
Our current NiW prototype creates workflows for WINGS system 
from Jupyter Notebooks. The software is available online [3].  
     NiW takes as input a notebook file and generates: 1) a zip file 
for each workflow component (e.g., Component1.zip), containing 
the component code as a Python script (e.g., Component1.py), a 
script file (named io.sh) to handle the inputs and outputs of the 
component, and a script (named run) to execute the component; 2) 
a file with a list of the names of the components and their inputs, 
outputs, and parameters; and 3) the workflow structure. NiW 

generates first (1) and (2) and uses those files to automatically 
create (3). NiW also creates the data type “File” and associates all 
data files (inputs, intermediate, and results) to this data type. NiW 
uses the notebook’s filename to name the workflow. 
     Figure 1 illustrates how the notebooks are converted into 
workflows by NiW using the approach outlined in Section 3. 

5.1   Current Limitations of NiW 
The following are limitations of our current NiW implementation. 
Python is the only programming language supported. The use of 
magic commands is restricted, currently only the magic command 
%matplotlib (which allows visualizations to be generated) is 
supported. The only methods supported for opening files are the 
built-in method “open” and the method "read_csv" from Pandas,3 
a well-known data analysis library in Python. Only Matplotlib can 
be used to generate visualizations. Finally, the notebook should 
run fully without errors. This is because if an error occurs while 
executing a notebook, it would be difficult to identify how data 
are generated and used throughout all the cells. Moreover, errors 
in code might be propagated to the workflow components. 

5.2   Using NiW 
To demonstrate how NiW works we have chosen a Jupyter 
Notebook for computational journalism taken from 
http://nbviewer.jupyter.org/gist/darribas/4121857.  This notebook 
was created by journalists at The Guardian newspaper and uses 
real world data to analyze and map the incidents during the 2012 
Gaza-Israel crisis, exploiting the spatial as well as the temporal 
                                                                    
3 http://pandas.pydata.org 

 
Figure 1. Using NiW to generate a WINGS workflow from a Jupyter Notebook. 



SciKnow’2017, December 2017, Austin, Texas USA Carvalho et al. 
 

6 
 

dimension of the data. The modified version of the notebook, the 
WINGS workflow, and the workflow execution are available at 
[3].  

We modified the notebook based on the guidelines presented 
in Section 4, and to address the limitations of our current 
implementation of NiW mentioned above. The only changes 
required by our guidelines in the notebook code were related to 
guideline #3 – to write newly generated data into files: (1) saving 
the data retrieved online in a local file, instead of loading it in 
memory to be used in subsequent cells; (2) saving changes made 
to the data in each cell into a new file; (3) opening the updated 
data file saved by (2) in subsequent cells.  

The nine code cells in the original notebook resulted in five 
workflow components. The code cells containing only library 
imports were merged with other components as well as the cells 
containing the declaration code of the function parse_loc. The 
inputs of the workflow are the parameters api_key, request_url 
and query, variables with assignment to string values in the 
original cell. After retrieving the data, it is saved as a CSV file by 
Component1. Components 3, 4 and 5 save the graphs generated 
for future inspection, originally showed inline in the notebook. 

The modified notebook is improved for use by scientists 
with respect to the original version in several respects, such as 
making inputs explicit, saving intermediate results, merging 
related cells into meaningful components, and making outputs 
explicit. 

Figure 2 shows the workflow created by NiW using the 
modified notebook as input. Note that even if notebooks always 
have a sequential structure, workflows do not.  In this case, there 
are three components at the bottom that could be run in any order 

because there are no data dependencies across them.  This helps a 
user see how the different steps are related.  Unfortunately, the 
workflow is not more understandable because the components and 
datasets do not have very meaningful names.  A user could easily 
edit the workflow in WINGS to change those names.   

One benefit of the workflow is to support comparison and 
provenance when run with new datasets.  Journalists from The 
Guardian created the input dataset in collaboration with Internet 
users. If the input data is updated, the workflow could easily be 
executed again, and its results can be compared. Since all the 
intermediate results are stored as provenance information, they 
may also be compared to previous executions. Another benefit of 
the workflow is to compare the results when the code changes.  In 
this case, the notebook is collaborative and can be extended by 
users via GitHub. When the notebook is changed, NiW can be re-
run and a new workflow would be generated and executed. The 
workflows for different notebook versions can be easily 
compared. 

6 RELATED WORK 

There are several related approaches to expose the dataflow 
within scripts and/or to map scripts into structures that support 
provenance tracking.   
      NoWorkflow [11] captures provenance information from 
scripts to help scientists understand the script execution. However, 
this approach does not simplify the understanding of the script 
specifications for non-programmers. YesWorkflow [10] enables 
scientists to make explicit the dataflow in scripts by providing 
special tags that scientists use to annotate the scripts. These 
annotations split the script into steps and clarify the inputs and 
outputs of each step as well as the structure of the workflow. It 
enables the creation of a visualization based on these annotations, 
helping scientists to understand the dataflow within the script. 
However, the scientist still has a script which is difficult to reuse 
compared to workflows. 
      W2Share [2] focus on the conversion of scripts into scientific 
workflows. This approach automatically generates workflows 
from annotated scripts. However, this work does not consider 
peculiarities of notebooks.  

 [13] proposes an approach to capture provenance from 
notebooks automatically allowing the analysis of provenance 
information within the notebook, both to reason about and to 
debug their work. [9] captures dataflows from notebooks by 
specifying a unique and persistent identifier for each cell and its 
outputs which can be referred in other cells. In our work we 
provide guidelines to notebook designers to improve the 
understanding of the notebooks by scientists, and then converted 
the modified notebooks into workflows automatically. 

7 CONCLUSIONS 
We presented an approach to map notebooks into workflows, 
addressing many issues that arise because of the implicit dataflow 
in notebooks.  We introduced a set of general guidelines for 
notebook developers that help make dataflow more explicit, 
which improves understandability and provenance tracking.  We 

 
Figure 2. WINGS workflow created from The Guardian’s notebook. 



Converting Notebooks into Workflows           SciKnow’2017, December 2017, Austin, Texas USA 
 

 7 

implemented NiW, a prototype tool that can convert notebooks 
that follow those guidelines into workflows, in particular Jupyter 
Notebooks into WINGS workflows.  
     An important area of future work is to make workflows more 
understandable.  Users could edit the names of the workflow 
components and datasets to make them more meaningful.  
Another approach would be to use metadata tags for notebooks to 
facilitate the creation of components and workflows. For example, 
a metadata tag could be added in the notebook to give each cell a 
meaningful name, so that NiW would use that name rather than a 
synthetic one.  Another example is the assignment of markdown 
cells to workflow components, could also be addressed by using 
metadata tags provided by the notebook creator. 
     Future work also includes the automatic generation of 
notebooks from workflows.  This would be useful for users who 
reuse workflows written by others, as it would enable them to use 
the notebook environment to inspect the code that implements the 
workflows.  In addition, a notebook diagram could be included in 
the notebook to make the role of each cell clearer. 
     An interesting direction for future work is to explore the use of 
workflows for tracking provenance of notebook results and for 
comparing different notebooks. Workflows can provide 
provenance records for all the newly generated results.  In 
addition, the structure of workflows makes it easier to compare 
notebooks because they expose the similarities, the common sub-
workflows, and the differences in implementations. There are 
many opportunities to explore the interplay between notebooks 
and workflows in terms of alternative user interfaces, execution 
paradigms, and provenance tracking, and comparison and reuse. 

ACKNOWLEDGMENTS 
This work was supported in part by a grant from the US National 
Science Foundation under award ICER-1440323 and ICER- 
1632211 (EarthCube RCN IS-GEO), and in part by the Sao Paulo 
Research Foundation (FAPESP) under grants 2017/03570-3, 
2014/23861-4 and 2013/08293-7.  We would like to thank many 
collaborators for their feedback on this work, in particular Jeremy 
White and Zachary Stanko. 

REFERENCES 
[1] Bergmann, R.; and Gil, Y. Similarity Assessment and Efficient Retrieval of 

Semantic Workflows. Information Systems Journal, 40. 2014. 
[2] Carvalho, L. A. M. C.; Malaverri, J. E. G.; Medeiros, C. B. Implementing 

W2Share: Supporting Reproducibility and Quality Assessment in eScience. In 
Proceedings of the 11th Brazilian e-Science Workshop, São Paulo, Brazil, 2017. 

[3] Carvalho, L. A. M. C, Wang, R and Garijo, D. (2017, December 9). 
KnowledgeCaptureAndDiscovery/niw: Notebooks into workflows 0.0.1 (Version 
0.0.1). Zenodo. http://doi.org/10.5281/zenodo.1098344 

[4] Deelman, E., Singh, G., Su, M. H., Blythe, J., Gil, Y., Kesselman,C.,  Mehta, G., 
Vahi, K.,  Berriman, G. B., Good, J.,  Laity, A., Jacob, J. C. and Katz, D. S. 
Pegasus: a Framework for Mapping Complex Scientific Workflows onto 
Distributed Systems. (2005) Scientific Programming Journal, vol. 13, pp. 219-
237. 

[5] Garijo, D.; Corcho, O.; Gil, Y.; Gutman, B. A.; Dinov, I. D.; Thompson, P.; and 
Toga, A. W. FragFlow: Automated Fragment Detection in Scientific Workflows. 
In Proceedings of the IEEE Conference on e-Science, Guaruja, Brazil, 2014. 

[6] Garijo, D.; Corcho, O.; Gil, Y.; Braskie, M. N.; Hibar, D.; Hua, X.; Jahanshad, 
N.; Thompson, P.; and Toga, A. W. Workflow Reuse in Practice: A Study of 
Neuroimaging Pipeline Users. In Proceedings of the IEEE Conference on e-
Science, Guaruja, Brazil, 2014. 

[7] Gil, Y.; Ratnakar, V.; Kim, J.; Gonzalez-Calero, P. A.; Groth, P.; Moody, J.; and 
Deelman. Wings: Intelligent Workflow-Based Design of Computational 
Experiments. E. IEEE Intelligent Systems, 26(1). 2011. 

[8] Hauder, M.; Gil, Y.; Sethi, R.; Liu, Y.; and Jo, H. Making Data Analysis 
Expertise Broadly Accessible through Workflows. In Proceedings of the Sixth 
Workshop on Workflows in Support of Large-Scale Science (WORKS'11), held 
in conjunction with SC 2011, Seattle, Washington, 2011. 

[9] Koop, D., and Patel, J. Dataflow Notebooks: Encoding and Tracking 
Dependencies of Cells. In 9th USENIX Workshop on the Theory and Practice of 
Provenance (TaPP 17). USENIX Association. 2017. 

[10] McPhillips, T., Song, T., Kolisnik, T., Aulenbach, S., Belhajjame, K., Bocinsky, 
K., Cao, Y., Chirigati, F., Dey, S., Freire, J. and Huntzinger. YesWorkflow: A 
User-Oriented, Language-Independent Tool for Recovering Workflow 
Information from Scripts., D. International Journal of Digital Curation 10, no. 1 
(2015): 298-313. 

[11] Murta, L., Braganholo, V., Chirigati, F., Koop, D. and Freire, J. noWorkflow: 
capturing and analyzing provenance of scripts. In International Provenance and 
Annotation Workshop (pp. 71-83). Springer. 2014. 

[12] Oinn, T., M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble, 
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. 
Stevens, A. Wipat, and C. Wroe.  Taverna: lessons in creating a workflow 
environment for the life sciences. Concurrency and Computation: Practice and 
Experience, 18(10), 2006. 

[13] Pimentel, J.F.N., Braganholo, V., Murta, L. and Freire, J. Collecting and 
analyzing provenance on interactive notebooks: when IPython meets 
noWorkflow. In Workshop on the Theory and Practice of Provenance (TaPP), 
Edinburgh, Scotland (pp. 155-167), 2015. 

[14] Shen, H. Interactive notebooks: Sharing the code. Nature, 05 November 2014. 


